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Abstract

Fractional derivative models offer a powerful tool to describe the dynamic behaviour of real viscoelastic
materials. A version of the fractional derivative models characterized by five parameters is presented and
investigated in this paper in order to describe asymmetrical loss factor peak and the high-frequency
behaviour of polymeric damping materials. The speculative derivation of the model constitutive equation
containing time derivatives of stress and strain of different orders is given. The model behaviour is
investigated in the frequency domain, the physical meaning of the model parameters is defined and
constraints on the parameter values are made. It is shown that the asymmetry of loss peak and the high-
frequency behaviour of the model are governed by the difference between the order of time derivatives of
stress and strain. Moreover, it is shown that this difference is related to the high-frequency limit value of the
loss factor. The model is fitted to experimental data on some polymeric damping materials to verify its
behaviour.
© 2002 Elsevier Ltd. All rights reserved.

1. Introduction

Polymeric materials are widely used for sound and vibration damping. One of the more
notable properties of these materials, besides the high damping ability, is the strong frequency
dependence of dynamic properties; both the dynamic modulus of elasticity and the damping
characterized by the loss factor. The typical behaviour is that the dynamic modulus increases
monotonically with the increase of frequency and the loss factor exhibits a wide peak [1,2].
It is rare that the loss factor peak, plotted against logarithmic frequency, is symmetrical
with respect to the peak maximum, especially if a wide frequency range is considered. The
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experiments usually reveal that the peak broadens at high frequencies. In addition to this,
the experimental data on some polymeric damping materials at very high frequencies, far
from the peak centre, show that the loss factor—frequency curve “flattens” and seems
to approach a limit value, while the dynamic modulus exhibits a weak monotonic
increase at these frequencies [3—8]. These phenomena can be seen in the experimental
data published by Madigosky and Lee [3], Rogers [4] and Capps [5] for polyurethanes, and
moreover by Fowler [6], Nashif and Lewis [7], and Jones [§] for other polymeric damping
materials.

The computerized methods of acoustical and vibration calculus require the mathematical
form of frequency dependences of dynamic properties. A reasonable method of describing
the frequency dependences is to find a good material model fitting the experimental data.
The introduction of fractional calculus into the model theory of viscoelasticity has resulted
in a powerful tool to model the dynamic behaviour of polymers and other materials [4,9-21].
In this way, the quantitative behaviour of the conventional viscoelastic models (Kelvin,
Maxwell, Zener, etc.) can be improved, and a number of fractional derivative models
can be developed. Of these models, the fractional derivative Zener model characterized
by four parameters has proved to be especially appropriate to predict the dynamic
behaviour of polymeric damping materials over a wide frequency range [4,11,18]. This
model is robust and has solid theoretical basis [11], but is not able to describe the
asymmetry of the loss peak and the high-frequency behaviour of the dynamic properties outlined
above.

Modelling the asymmetrical loss peak is an old problem not only in polymer mechanics,
but also in the field of dielectric properties of polymers. For this purpose, empirical
models—mathematical formulae—have been developed which can be used in describing either
the dielectric or the dynamic mechanical properties of polymers [22,23]. Among the models,
the Havriliak—Negami model is especially useful and has been used intensively for the
asymmetrical loss factor peak of polymeric damping materials, mainly polyurethanes
[23-25]. Nevertheless, the Havriliak—Negami model cannot describe the aforementioned
high-frequency behaviour of the polymeric damping materials, since this model predicts a
vanishing loss factor and a finite limit value for the dynamic modulus at high frequencies.
The other disadvantage of this empirical model is that it cannot be related to the general
constitutive equation of viscoelastic materials. One of the fractional derivative models,
used by Bagley and Torvik [10], is free from these disadvantages and able to predict an
asymmetrical loss peak, but this fractional model is not correct theoretically [11]. Later
Friedrich and Braun [14] suggested another empirical formula for asymmetrical loss peak,
and showed that this formula could be related to the general constitutive equation of
fractional derivative models, but unfortunately no attention has been paid to the loss factor in
their work.

The aim of this paper is to show that a version of the fractional derivative Zener
model characterized by five parameters, referred to as five-parameter fractional derivative Zener
model, is able to describe not only the asymmetrical broadening of the loss factor peak, but
also the peculiar high-frequency behaviour of dynamic properties of some polymeric
damping materials. The model behaviour will be investigated in the frequency domain, and
verified by fitting it to experimental data.
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2. Need for five-parameter model

The linear dynamic properties of materials in the frequency domain are characterized by the
complex modulus of elasticity. The complex shear modulus G is used in this paper to give the
dynamic properties of polymeric damping materials. The definition of G is

= . 6(jw) ) .

Glj) = 25 = Ga(@) +Gi(©) = G@)[1 + (@) ()
where j = v/ —1 is the imaginary unit, = 2xf; f is the frequency in Hz, §(jo) and &(jw) are the
Fourier transforms of the stress- and strain-time histories, respectively, G, is the dynamic shear
modulus, Gj is the shear loss modulus and # is the loss factor,

_ Gi(w)
Ga(w)

The typical frequency variations of the dynamic properties for polymeric damping materials are
illustrated in Fig. 1 with the assumption that the loss peak is symmetrical with respect to
logarithmic frequency (solid line). In this case, four parameters are needed as a minimum to
specify mathematically the frequency dependences of the dynamic properties. The four parameters
are: the frequency w, and the magnitude #,, of maximum of the loss factor peak (or those of the
loss modulus peak), a parameter, say «, characterizing the slope of increase and decrease of loss
functions measured far from the peak centre, moreover the zero frequency value of dynamic
modulus, i.e., the static modulus denoted by Gy = G; (0). It should be pointed out that the high-
frequency value of the dynamic modulus and the slope of increase of G;(w) are dependent on the
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Fig. 1. The experiments made on some polymeric damping materials in a wide frequency range reveal that the loss
factor peak is asymmetrical and 5(w) approaches a limit value, while the dynamic modulus exhibits a weak monotonic
increase at high frequencies.
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damping [26] and, therefore, the four parameters are enough to specify the dynamic modulus-
frequency function.

The experiments, however, made on polymeric damping materials over a wide frequency
range covering 8—10 decades or more, reveal that the loss factor peak is not symmetrical.
Nevertheless, an approximate symmetry may often be seen if a relatively narrow range,
say 2—4 decades of frequency is considered around the peak centre. Outside this range, the
usual observation is that the loss factor peak broadens at high frequencies. In addition to
this, the experiments made on some damping polymers far from the peak centre show that
the loss factor—frequency curve ‘‘flattens” and seems to approach a limit value 5, at
high frequencies [3-8]. The “flattening” and the high-frequency value 7, for example
for a polymeric damping material can be observed as far from the peak centre as about 6—7
decades, and 9-10 decades of frequency, respectively [7,8]. The frequency dependence of
the loss modulus is similar to that of the loss factor, while the dynamic modulus exhibits a
monotonic increase in the whole frequency range of experiments. These phenomena are
illustrated in Fig. 1 with a broken line, and some experimental data will be given in Section 5.
(More details on the high-frequency behaviour of polymeric materials and its theoretical
explanation will be given in a subsequent paper.) It is evident that at least one more parameter
besides the four previous ones, say  governing the high-frequency behaviour of the material, has
to be introduced for describing asymmetrical loss peak. Consequently, five parameters as a
minimum are needed to model the dynamic behaviour of these polymeric damping materials over
a wide frequency range.

3. Preliminaries—the four-parameter model

The fractional derivative models have been proved to be efficient in describing the dynamic
behaviour of real materials, especially polymers used for sound and vibration control [4,9-21].
The development of these models is due to the recognition of the fact that the quantitative
behaviour of the conventional viscoelastic models can be improved by replacing the integer order
time derivatives of stress and strain in the relevant model constitutive equation with fractional
order derivatives. The general form of the constitutive equation for the conventional viscoelastic
models is [10]

a(t)+b gcr(t)+b d—zo(l)—l- +b d—ncr(t)
by 2 dr "dm
= ape(t) + a gs(t)+a d—23(1)+ +a —ms(t) (3)
— o ldf 2dt2 mdtm )
where ¢ is the time, ay,ay,...,a, and, by, by, ...,b, are material constants. It is important

to note that the number of time derivatives of stress and strain in Eq.(3) cannot be
arbitrary to insure that the model is physically meaningful satisfying the thermo-
dynamic requirements. It is known that the thermodynamic requirements are satisfied
only if m = n or m = n+ 1 [18]. The replacement of the integer order derivatives with fractional
order ones results in the general form of the constitutive equation for the fractional derivative



T. Pritz | Journal of Sound and Vibration 265 (2003) 935-952 939

model:
dﬁ] dﬂz dﬁn
O'(l) + b1 M O'(f) + b2 m O'([) + -+ bn E (T(t)
o] o Olm
= aoe(t) + ar oe(0) + ay one(t) o o 6(0), 4)

where 0<oj <o <--- <o, <l and 0<f; <f,<--- <f,<1 are material constants. The fractional
derivation, say the oth order derivative of &(z), can be defined by the gamma function

(I') as [10]
d* 1 d [ &)
D= rao aﬁ/o o )

Starting with Eq. (4), the fractional version of any conventional viscoelastic model, e.g., Kelvin,
Maxwell, Zener, etc., is easy to develop. Among the models, the fractional Zener model has been
found to be efficient to predict frequency variations like those drawn by solid line in Fig. 1 (the
symmetrical loss factor peak). The constitutive equation for this model can be derived from
Eq. (4) with the assumption that all parameters are zero with the exception of ay, ay, by, a; and f,
then

B oy

d
a(t) + b T a(t) = ape(t) + a i

&(?). (6)

This equation contains five parameters, but four of them are enough for the symmetrical loss
peak. Bearing in mind that all the four members in Eq. (6) are necessary to model the dynamic
behaviour of a solid material exhibiting one loss peak, there is only one way to reduce the number
of the parameters, that is to assume that: ; = o« = o. Then, the model parameters can be written
as

b] = ‘C“, (7)
ay) = G(), (8)
a = Gy,1%, 9)

where 7 is the relaxation time and the parameters Gy and G, have modulus dimension. Using
these notations, Eq. (6) is

o

a(t) + % a(t) = Goe(t) + G T° % &(2). (10)

This equation yields the constitutive equation of the conventional Zener model if o= 1.
Therefore, the model represented by Eq. (7) is rightly referred to as fractional Zener model, or
more precisely as the four-parameter fractional derivative Zener model.

The complex modulus of the model can be derived by transforming Eq. (10) into the frequency
domain. The derivation is easy to perform, since [10]

F (‘11—; &(t) = (jo) Fe(t), (11)
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where F denotes the Fourier transform. The derivation results in

~. . I+dGjor)
Gljo) = Gy oo (12)
where
Gy
d ===, 13
G (13)
The rearranged form of Eq. (12) will be useful in this paper:
= (jor)*
G =Gy + Go(d — 1)————. 14
(o) = Go + Go( 7 + Goo (14)
The components of the complex modulus are:
1+ (d + 1) cos(an/2)a* + dw*
— n n 1
Galw) = Go 1 + 2cos(an/2)w% + w2’ (15
(d — 1) sin(am/2)*
Gil@) = Go 1 + 2cos(an/2)w? + w2’ (16)
d — 1)sin(on/2)w*

T 14+ 1)cos(an/2)w? + da?”

Gy (w) /Gy
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Fig. 2. Frequency variations of the dynamic modulus, loss modulus and loss factor predicted by the four-parameter
fractional Zener model (—) and the conventional Zener model (- - - -), respectively.
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where w, is the normalized frequency,
Wy = WT. (18)

The variations of G,(w)/ Gy, Gi(w)/ Gy and n(w) are plotted against the normalized frequency in
Fig. 2 in a log-log co-ordinate system for « = 0.7 and d = G, /Gy = 103 by way of example. The
behaviour of the conventional Zener model (o« = 1) is shown too for the sake of comparison. It
can be seen that the dynamic modulus monotonically increases with increasing frequency, but
G4(w) has an upper limit value. Both the loss modulus and the loss factor have a peak, which are
symmetrical with respect to logarithmic frequency. The maximum in the loss modulus occurs at
w, = 1, i.e., at the frequency of

w; =1/t (19)

Therefore, the normalized frequency can be defined as
Wy = o/ (20)

The model behaviour below and above the loss modulus peak is clear from the low- and high-
frequency approximations, respectively, of Egs.(15)—(17). The approximations with the
assumption that G, /Gy> 1 result in

Ga(w) = G, (21)
Gi(w)= G, sin(an/2)w}, (22)
Gy . ‘
n(w)= G sin(am/2)w;, (23)
0
if w,<1, and
Gi(w)=Gy, (24)
Gilw)= G, singom/2)’ (25)
)= 0T, 26)
wn

if w, > 1. It can be seen from this brief study that all parameters in the model have a clear physical
meaning, namely: Gy is the static modulus of elasticity, G, is the high-frequency limit value of
dynamic modulus, and the parameter o governs the increase and decrease of the loss functions at
low and high frequencies, respectively. Note that Eq. (19) offers another interpretation for the
meaning of parameter t, that is 1/7 is the frequency of maximum in the loss modulus peak.
The four-parameter fractional Zener model has solid theoretical basis, it is related to the general
fractional derivative constitutive equation of viscoelastic materials as discussed above, moreover
the model is causal and satisfies the thermodynamic constraints [11]. The model has successfully
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been fitted to experimental data on a wide variety of materials, especially polymers for vibration
damping [4,9,11,18]. Nevertheless, the four-parameter model is not able to predict asymmetrical
loss peak.

It seems to be reasonable to try to modify the four-parameter model by assuming that the order
of time derivative of stress and strain is different in Eq. (6), that is «; # f;, in order to create
asymmetrical loss peak. This assumption leads to the constitutive equation:

d? d*
a(t) + 7* 377 00 = Gos(D) + Gou7” T2 e(0), (27)

where the notations o = a; and = fi; have been introduced. The complex modulus of the
model is

1 + d(jor)*
1+ (jor)f
This model was used by Bagley and Torvik [10] to fit experimental data to a damping material
exhibiting asymmetrical loss peak. Nevertheless, it was later shown theoretically that this version

of the fractional Zener model was not correct, because it does not satisfy the thermodynamic
constraints [11].

G(jw) = Gy (28)

4. The five-parameter model
4.1. Constitutive equation

As a result of the above survey of the four-parameter fractional Zener model and its
modification, it can be concluded that the number of time derivatives in Eq. (6) has to be increased
to create a physically meaningful five-parameter model. The number of time derivatives of strain
is reasonable to increase, bearing in mind that with the conventional viscoelastic models (i.e., in
case of integer order derivatives) the number of time derivatives of stress must not be larger than
that of strain to satisfy the thermodynamic constraints as mentioned in Section 3. Consequently,
the new constitutive equation is

ﬁ1 o o

d
a(t) + b Qi a(t) = ape(t) + a; a e(t) + ar a &(1), (29)

where o, > . This equation contains seven parameters, but two of them are unnecessary for our
purpose. In order to reduce the number of parameters, it is assumed by the analogy of deriving the
four-parameter model that: «; = f/; = . The parameters can be written as

by =1, (30)
ay) = Go, (31)
ay = G, (32)

a) = Gz’l,'a, (33)
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where G| and G, have modulus dimension, and « = «,. Using these notations, Eq. (29) is

o

p & =G G’ &’ Gyt 34
o(t) + 17 75 0(0) = Goe(D) + Gie” 5 e(0) + Gt 2 (1), (34)

where o > ff. Now the model has six parameters, which are easy to reduce to five by considering
the fact that Eq. (34) must yield the four-parameter fractional Zener model if o« = f. This
requirement is satisfied by the choice of

G = Gy (35)
and
G, = G, — Gy. (36)

Therefore, five parameters (Gy, G, o, f and 1) have remained, and the final form of the model
constitutive equation is

d? d? d”
B — B — @
a(t) +1 ap a(t) = Goe(t) + Got i &)+ (G, — Go)t i &(1). (37)

The model represented by Eq. (37) is referred to as the five-parameter fractional derivative Zener
model, or shortly as the five-parameter fractional model.

The complex modulus for the five-parameter model is easy to derive by means of Eq. (11), the
result is

(jor)*

%@:%+%u—%:agﬁ

(38)

The comparison of Eqs. (38) and (14) suggests that the five-parameter model can be derived from
the four-parameter model simply by replacing the o exponent in the denominator of Eq. (14) with
p. Friedrich and Braun [14] introduced in this way the complex modulus of the five-parameter
model and showed that the transformation of Eq. (38) into the time-domain results in the
constitutive equation (37).

It should be noted that the constitutive equation (37) contains formally the same parameters as
Eq. (10), but the meaning of some parameters occurring in both equations is not the same. The
investigation of the model behaviour in the time-domain has revealed that 7 is the relaxation time
[14], but the value of 7 is evidently different from that in the four-parameter model. The parameter
Gy is naturally the static modulus, and it is very probable that G, is related to the high-frequency
behaviour of dynamic modulus, but the precise meaning of G, is not known yet. The meaning of
G .., moreover o and f will be cleared up by investigating the model behaviour in the frequency
domain.

Note further that the derivation of the model constitutive Eq. (37) imply a restriction on the
relation between o and f, that is: o > f. It will also be shown by investigating the model behaviour
that this restriction is absolutely necessary to insure that the five-parameter model is physically
meaningful.
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4.2. Model behaviour

The dynamic and loss moduli are derived from Eq. (38) to investigate the model behaviour in
the frequency domain. Some mathematical manipulations on the real and imaginary parts of
Eq. (38) result in

cos(am/2)w* + cos[(o — B)n/2]w*HF

Sl SR Cu@E 39
i) = Go + Go(d — 1) 1+ 2005 D0 + (39)
sin(am/2)w? 4 sinf(oe — p)n/2]w*+F
= d—1 n n 4
Gi(w) = Go( ) 1 + 2 cos(Br/2)el + o (40)
() = (d = D{sin(an/2)of; + sinl(« — fr/2} 0} (41)

1+ 2cos(Br/2)ah + w2 + (d — ){cos(am/2)w? + cos[(e — fm/2)]w? P}

where w, is defined by Eq. (18).

The frequency variations of the dynamic and loss moduli and the loss factor were studied
numerically with special respect to the role of the difference between « and f5, bearing in mind that
a > f. Typical results with parameters of « = 0.7; f = 0.69, 0.65, 0.60, and d = 103 are shown in
Fig. 3. The behaviour of the four-parameter fractional Zener model (¢« = f = 0.7) is shown too in
Fig. 3 for the sake of comparison.
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Fig. 3. Frequency variations of dynamic modulus, loss modulus and loss factor predicted by the five-parameter
fractional Zener model (----, —- —, ---) and the four-parameter fractional Zener model (—), respectively.
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Fig. 3 demonstrates that there is a striking difference between the behaviours of the five- and
the four-parameter models at high frequencies. Nevertheless, the low-frequency behaviour of
these models is practically the same, as one can see from the low-frequency approximation of
Eqgs. (39)—(41), resulting in

Ga(w)= Gy, (42)
Gi(w)= G, sin(an/2)w?, (43)
n(w)= G sin(om/2)w;, (44)

Go

provided that w, <1 and G, /Gy> 1. The same relations have been derived in Section 3 for the
four-parameter model. Therefore, it can be concluded that the difference between o and f
practically has no effect on the behaviour of the five-parameter model at low frequencies.

In contrast to this, the behaviour of the five-parameter model at high frequencies is
fundamentally affected by the value of « — 8. The larger the difference between o and f is, the
more prominent its effect is on the model behaviour. It can be seen in Fig. 3 that the loss peak
broadens at high frequencies. In addition to the peak broadening, there is another fundamental
difference between the high-frequency behaviour of the five- and four-parameter models. It is
known that the dynamic modulus of the four-parameter model approaches a limit value (G, ) at
high frequencies, while the relevant loss functions approach zero (Fig. 2). In contrast to this
behaviour, the dynamic modulus of the five-parameter model monotonically increases at high
frequencies without upper limit, and the loss modulus, after a slight decrease above the peak
maximum starts to increase like the dynamic modulus, and the loss factor approaches a limit value
N, - All these are clear from the high-frequency approximations of Egs. (39)—(41) resulting in

Ga(w)= Gy, cosf(ec — Pym/ 2w, (45)
Gi(0)= G, sin[(a — p)n/2)w” P, (46)
n., =tan[(e — B)m/2], (47)

provided that w,>1 and G, /Gy> 1. It can be read from these equations that the slope of the
high-frequency increase of the dynamic and the loss moduli is the same, and this slope is
determined by the value of o — . Moreover, it can be seen that o — f§ is related to the high-
frequency value of the loss factor.

The latter fact provides a useful tool to estimate the difference between o« and f for polymeric
damping materials. It is known from the experiments that the high-frequency value of loss factor
of these materials is usually smaller than 0.1 [3—8]. Using this value, it can be predicted by Eq. (47)
that

o — <0.06 (48)
with polymeric damping materials. Therefore, Eqs. (45)—(47) can further be simplified as
Ga(0) =G0 P, (49)

Gil@) =560 (0 = Py, (50)
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N %g(cx—ﬁ)- (51)

It is interesting to note that the value of oo — f§ practically has no effect on either the maximum
value or the position of the loss factor peak. On the contrary, the loss modulus peak is more
sensitive to the value of o« — f§ than the loss factor peak is. The loss modulus peak is shifted toward
higher frequencies and the peak magnitude slightly increases with the increase of « — ff. In
addition to this, the loss modulus peak may disappear if o — f§ exceeds a certain value, e.g.,
o — f> 0.1, but this value is not realistic with solid polymeric damping materials as mentioned
before.

As a result of this study, the physical meaning of the parameters «, f and G, in the model
constitutive equation (37) can be given. It is clear that o governs the low frequency increase of the
loss modulus and the loss factor. The value of 5, or more precisely the deviation of f from «,
governs the asymmetry of the loss peak and the high-frequency behaviour of dynamic properties.
Finally, the parameter G, is related to the high-frequency value of the dynamic modulus, but
here, in contrast to the four-parameter model, G, is not the limit value of G;(w). The precise
meaning of G, can be defined by means of Eq. (39), that is G, is a value of the dynamic modulus
which occurs above the loss modulus peak at a frequency determined by the solution of equation
as follows:

Gay(w) 11— cos(am/2)w} + cos[(a — ﬁ)n/2]wz+ﬁ

52
G.. 1+ 2cos(fr/2)el + w2 Y

Fig. 4 shows the graphical solution of this transcendental equation for some values of o and o — f8
which are characteristic of polymeric damping materials. It can be read from Fig. 4 that G, is a
value of dynamic modulus at a frequency between about 10w; and 100w;.

Gd(ul)/Go
(e

| L
102 10? 104

056, =
10"

Fig. 4. G, is a value of dynamic modulus at a frequency somewhere between 10w; and 100w; with polymeric damping
materials (w; is the frequency of maximum in loss modulus).
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Finally, in relation to the high-frequency behaviour it should be noted that the five-parameter
model is not intended to be used beyond a certain frequency. The model is aimed to be used within
a frequency range where the asymmetry of the loss peak and the peculiar high-frequency
behaviour of some polymeric materials can be observed.

4.3. Thermodynamic requirements

It is known from thermodynamics applied to real solid materials loaded dynamically that the
internal work and the dissipated energy must be positive [11]. It has been proved that these
requirements are satisfied if both the dynamic modulus and the loss modulus are positive for all
frequencies [11], i.e.,

Gy(w)=0 and Gy(w)=0, (53)
for
O<w< 0.
It is clear that a physically meaningful model must satisfy the thermodynamic requirements. On
the basis of conditions (53), restrictions on the model parameters can be developed. It can be seen

from Eq. (39) that the dynamic modulus of the five-parameter model is positive for all frequencies
regardless of the value of o and f, if

Go =0, (54)
G =0, (55)
d>1 (56)
and
1>0. (57)

It follows from the physical meaning of the model parameters discussed above that conditions
(54)—(57) are satisfied and, therefore, the dynamic modulus is positive for all frequencies. On the
contrary, the loss modulus can be negative for some frequencies if a<f, even if conditions
(54)—(57) are satisfied. The fact that the energy loss is negative at high frequencies if « < f, is clear
from Egs. (46) and (47). Therefore, it can be concluded that the five-parameter fractional Zener
model is physically meaningful only if

o> p. (58)

This conclusion supports the constraint implied in the derivation of the model constitutive
equation. Moreover, constraints (54)—(58) are in complete agreement with those developed by
Friedrich and Braun [14] as a result of investigating the model behaviour in the time domain.

5. Model and experimental data

The fitting of a model to the relevant experimental data is the true test of the model behaviour.
The five-parameter fractional Zener model was fitted to experimental data on some polymeric
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Gd' U{ (Pa)
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Fig. 5. Dynamic shear properties of damping material GE.SMRD. O, O, Experimental data from Ref. [6] (some
overlapping data have been omitted for the sake of clarity); —, calculated by the five-parameter fractional Zener model
with the parameters given in Table 1.

damping materials exhibiting dynamic behaviour outlined in the paper. The data were taken
from the literature after a careful consideration of the frequency range, the scatter and the
reliability of the data, and after the evaluation of the experimental method applied to produce
the data. The materials chosen for the fitting procedure include a polyurethane rubber [3],
two commercially available damping polymers known as GE.SMRD [6], and EAR
C-1002 [7,8], respectively. In addition to these organic polymers, an inorganic polymer known
as Corning glass developed for high temperature damping [10] was chosen for the fitting. In all
cases, the fitting of the five-parameter fractional Zener model to the experimental data was
remarkably good. Results for two materials are presented and discussed here briefly by way of
example.

Fig. 5 shows the experimental values of the dynamic shear properties of the damping
material GE.SMRD taken from Ref. [6]. The dynamic propertics were measured by the
composite beam method at several temperatures, and the data covering about 10 decades
of frequency were determined by means of the frequency—temperature equivalence principle.
The low scatter and the smoothness of the reduced frequency curves testify the reliability
of the experimental data. The frequency dependences of the dynamic properties un-
doubtedly reveal a material behaviour to be described by the five-parameter fractional
model. The loss factor peak is asymmetrical, it broadens above the maximum and #n(w)
approaches a value of approx. 0.08 at high frequencies. The loss modulus exhibits a similar
behaviour, however, the relevant peak is less prominent than the loss factor peak. The increase of
the dynamic modulus is monotonic and no upper limit can be seen in the frequency range of the
experiment.

The smooth frequency curves inspired the author to try to read off the model parameters
directly from the experimental data. The value of « could easily be determined from the frequency
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Table 1

Parameter values determined for the five-parameter fractional Zener model

Material Gy (Pa) G, (Pa) d Moo o p f1 (Hz) 7 (s)
GE.SMRD 5% 108 1.8x 108 36 0.08 0.605 0.554 760 2.09x107*
EAR C-1002 8 x 10° 1.256 x 10° 1570 0.012 0.566 0.558 2.2 x10° 7.23%x 10710

1010

25 o G

10°

108

G4.G, (Pa)

10’

108

0% 102 10 102 g0t 104 108 100 10 0™
f(Hz)

Fig. 6. Dynamic shear properties of damping material EAR C-1002. (0, O, Experimental data from Ref. [7] (some
overlapping and erroneous data have been omitted for the sake of clarity); —, calculated by the five-parameter
fractional Zener model with the parameters given in Table 1.

increase of the loss modulus, and f was calculated by Eq. (47) from the high-frequency limit value
of the loss factor. Moreover, the static modulus Gy could quite reliably be read off from Fig. 5, but
only approximate values for G, and the f; frequency of the loss modulus peak could be
determined from the experimental data. These parameter values were used to start the usual fitting
procedure. The refined parameters are given in Table 1, and the model behaviour calculated by
these parameters is shown in Fig. 5. The fitting of the five-parameter fractional model to the
experimental data is very convincing.

The experimental values of the dynamic shear modulus and the relevant loss factor determined
for the damping material EAR C-1002 are given in Fig. 6. The data have been taken from Ref. [7].
The data cover a very wide frequency range extending from 107> up to 10'>Hz. The wide
frequency range is the result of the use of different measurement techniques and the application of
the frequency—temperature equivalence principle. The low-frequency data were measured by a
direct stiffness method, and the high-frequency data were determined by the well-known
composite beam method used in a wide temperature range. It should be noted that this material
was the subject of an international Round Robin test [§], and the results of this test support the
reliability of data given in Fig. 6. It can be seen that the experimental values of the dynamic
modulus have low scatter and the relevant frequency curve is pretty smooth. In contrast to this,



950 T. Pritz | Journal of Sound and Vibration 265 (2003) 935-952

the loss factor data exhibit somewhat larger scatter, as usual, but the peak asymmetry and the
asymptotic high-frequency behaviour of the loss factor is unambiguous with this material too.
The experimental values of the dynamic Young’s modulus and the relevant loss factor are also
available for this material up to 10'*Hz [7,8], and these data definitely support the frequency
variations of the shear dynamic properties seen in Fig. 6.

The fitting procedure was started again by estimating the parameter values from the
experimental frequency curves. The approximate value of «, in this case, was determined from the
maximum slope of the dynamic modulus—frequency curve, since this slope is nearly identical with
that of the frequency increase of the loss modulus if G, /Gy > 1[26]. The value of f was calculated
by the aforementioned method from the high-frequency loss factor (17, 20.012). Quite a reliable
value for Gy and G, could be read from the smooth dynamic modulus—frequency curve. Finally,
the frequency f; of the loss modulus peak was estimated from the frequency f, of the loss factor
peak by using the relationship derived for the four-parameter fractional Zener model [18]:

1/28
fi=1h (%—j) . (59)

The refined parameter values determined by the fitting procedure are given in Table 1, and the
model behaviour is shown in Fig. 6. It can be seen that the five-parameter fractional Zener model
is able to describe the dynamic behaviour of this damping material over a range covering 16
decades of frequency.

6. Conclusions

A modified version of the fractional derivative Zener model characterized by five-parameters
has been derived and investigated in this paper in order to describe the asymmetry of the loss
factor peak and the high-frequency behaviour of dynamic properties experienced with some
polymeric damping materials. A speciality of this five-parameter model is due to the fact that the
relevant constitutive equation contains time derivatives of stress and strain of different orders. A
speculative derivation of the constitutive equation has been presented, and the physical meaning
of the model parameters has been cleared up. The behaviour of the five-parameter fractional
model has been investigated in the frequency domain and restrictions on the parameter values
have been developed. As a result of this investigation the following main conclusions can be
drawn.

(a) The five-parameter fractional model is physically meaningful only in that case if the order of
time derivative of strain is larger than that of stress.

(b) The five-parameter fractional model predicts an asymmetrical loss factor peak and that the
loss factor approaches a limit value, while the loss modulus and dynamic modulus increase by
the same power function at high frequencies.

(c) The asymmetry of the loss factor peak and the model high-frequency behaviour is governed
by the difference between the order of time derivatives of strain and stress.

(d) The difference between the order of time derivatives of strain and stress is related to the high-
frequency limit value of the loss factor.
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